Graph Learning Methods in Session-based Recommendations and Legal Case Retrieval

Ruihong Qiu r.qiu@uq.edu.au The University of Queensland

Background

Structural Information in IR

- Interaction-level structure
 - User-item interaction in recommender systems;
 - legal case reference, etc.

https://kumo.ai/ns-newsarticle-using-graph-learning-for-personalization-howgnns-solve-inherent-structural-issues-with-recommender-systems https://medium.com/interacta/visualizing-american-case-law-5bd0243a7097

Structural Information in IR

- Content-level structure
 - User history; legal case text structure etc.

... " taxpayer... has reasonable expectation of income from his various revenue sources" ... so that if a conclusion can be drawn in favour of the taxpayer in respect of either criterion this will suffice to make his farming a "chief source of income ".

Rethinking the item order in session-based recommendation with graph neural networks CaseGNN: Graph Neural Networks for Legal Case Retrieval with Text-Attributed Graphs

Challenge

An Informative Graph?

- The inductive bias in a graph:
 - Node:
 - Interaction-level: user, item, document, case
 - Content-level: item, word, sentence
 - Edge (structure):
 - Interaction-level: interaction, semantics relationship
 - Content-level: time order, knowledge relation

A Powerful Graph Learning Model?

- A general graph neural networks (GNN):
 - GCN, GAT, GraphSAGE, GIN, SGC, etc.
- Specific design:
 - Suitable for interaction data, item data, text data, etc.

Example I: Modelling User Session with Graph

My Own User Session

Post Malone - Psycho ft. Ty Dolla \$ign Post Malone - 971M views

Psycho ft. Ty Dolla Sign (Official Video) Song Available Now! https://PostMalone.ink.to/psychoYD Merch Available Here! https://postmaloneshop.com For More Post Malone Info https://postmalone.com...

The Weeknd - Blinding Lights (Official Video) The Weeknd - 636M views

Calvin Harris, The Weeknd - Over Now (Official Video) Calvin Harris 🔮 25M views Calvin Harris x The Weeknd – Over Now (Official Video) Apple Music

Calvin Harris x The Weekha – Over Now (Official Video) Apple Music 🎦 http://clvnhrr.is/OverNow/AppleMusic Spotify 💽 http://clvnhrr.is/OverNow/Spotify iTunes 💽...

The Weeknd - Heartless (Official Video)

Official music video for The Weeknd "Heartless" - available everywhere now: http://theweeknd.co/heartlessYD > Subscribe to The Weeknd on YouTube: http://theweeknd.co/subscribeY...

The Weeknd - The Hills (Official Video)

The Weeknd 💞 1.8B views The Weeknd - The Hills (Official Video) Download Song: http://theweeknd.co/BeautyBehindTheMadness

Taken from the new album Beauty Behind The Madness Stream/Share on Spotify: https://open.spotify...

The Weeknd - I Feel It Coming ft. Daft Punk (Official Video)

I Feel It Coming ft. Daft Punk (Official Video) Taken from the album Starboy https://TheWeeknd.Ink.to/IFeelItComingDaftPunkYD Connect with The Weeknd:... • From bottom to top indicates from old to new.

• What's next?

Post Malone, The Weeknd - One Right Now Post Malone J 78M views

Official music video for Post Malone and The Weeknd's single "One Right Now" - available everywhere:...

Modelling General Sequential Patterns

General sequences: sentence (semantic), time series (real number, periodic or trended)

• General tools: recurrent model, attention model ...

https://medium.com/digital-assistant-academy/the-importance-of-natural-language-understanding-in-voice-technology-a8e603654015

https://www.scylladb.com/glossary/time-series-data/

Development of PPTNet a Neural Network for the Rapid Prototyping of Pulsed Plasma Thrusters https://www.tensorflow.org/text/tutorials/transformer

Direct Modelling of User Sessions

• Directly using **existing** models: GRU4Rec, SASRec, BERT4Rec ...

[Hidasi et al. 2015, Kang et al. 2018, Sun et al. 2019] 11

Issues in Modelling User Sessions

- The user session (shopping or watching history) is different from general sequences.
 - No grammar semantics;
 - No periodic feature;
 - No continuous trending etc.
- Need to identify the difference and develop proper models to learn sequential patterns in user sessions.

Structural Information

- A sequence of anonymous user history within a short time period.
- Items have reappearance in the sequence, such as re-click products; re-listen to songs; re-watch videos.
- They are **PIVOTAL**,

H~**H**~**H**~

Converting to Graph

- Not like 1D sequence, graph has the topological structure with nodes and edges.
- **Convert** a sequence into a graph.
- Pivotal items become pivots.

FGNN Model

Streaming Scenario: GAG Model

- Model trained on offline data
- Needs to update with online data

[Qiu et al. SIGIR 2020, Liu, Qiu et al. ICDM 2023] 16

Cross-sequence Scenario

- Multiple sequence could contain same items
- Link multiple sequence together

[Qiu et al. TOIS 2020] 17

Positional Information

- An interaction at **different positions** will carry **different meanings** for user preference.
- Within a sequence, an **early** interaction would indicate the **initial** intention; A **later** interaction would indicate the **latest** intention.

$$v_3 v_2 v_5 v_6 v_7 v_3 v_9 v_7$$

 S_1

Position in General Sequence

- Attention mechanism has a **positional encoding** (PE) (counting from left to right).
- Based on sin/cos function. Each position corresponds to one row.

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Problems of PE In Interaction Sequence

- Original PE only tells how far away from the beginning (forwardawareness).
- **Problematic** example in following sessions for v_6 :

Need to know how far away from **both** the **beginning** (forward-awareness) and the **ending** (backward-awareness).

Dual Positional Encoding

- PE for interaction sequence needs to be both forward-aware and backward-aware
- Dual Positional Encoding (PDE):

 $p_{pos,2i}^{l} = \sin(pos/f(i)),$ $p_{pos,2i+1}^{l} = \cos(pos/f(i)),$ $p_{pos,2i+d/2}^{l} = \sin((l - pos - 1)/f(i)),$ $p_{pos,2i+1+d/2}^{l} = \cos((l - pos - 1)/f(i)),$

Theorem 4.3.1. *Dual positional encoding can represent the positional information of SBRS because it is both forward-aware and backward-aware.*

• Also a Learnable Dual Positional Encoding (LDPE)

PosRec Model

[Qiu et al. TOIS 2021] 22

Visualisation of PEs

- One sequence has 10 items, and the other one has 20.
- Forward-awareness for the beginning position.
- Only Dual and Learnable Dual PE have **backward-awareness**.
- Learnable one can identify different levels of importance.

Example II: Legal Case Retrieval with Graph

Legal Case Retrieval Workflow

Lafond v. Muskeg Lake Cree Nation (2008), 330 F.T.R. 60 (FC)

Summary:

Lafond was elected as a councillor to the Muskeg Lake Cree Nation Band Council. After ...

In the recent decision of **FRAGMENT SUPPRESSED**, the Federal Court of

Appeal: ...

For these reasons, the application for judicial review of Chief Ledoux's **decision** will be allowed.

Parties: plaintiff & defendant

→ Case Summaries

→ Citation

→ Judgment

Related Work in Legal Case Retrieval

- Bert-based model
- BERT-PLI
- Encode paragraphs with BERT
- Paragraph-level interaction

Related Work in Legal Case Retrieval

- Bert-based model
- SAILER
- Generative pretraining

Related Methods' Characteristics

• Pros

- Better accuracy with semantics by legal corpus pre-training
- Dividing case text for **lengthy** problem

• Cons

• Case text dividing -> loss of legal **context** information & case **global** view

Challenges

- Legal structural information:
 - High-order interactions of elements in a case: parties, crime activities and evidences
- Lengthy legal text limitation:

	LeCaRD COLIEE2023						
Language Avg. length/case Largest length of cases Avg. relevant accordance 10.25	$\begin{array}{ccc} \text{se} & \text{English} \\ 5 & 5,566 \\ 3 & 61,965 \\ 2 & 2.60 \end{array}$						

Solution

- Graph data is an effective data structure to incorporate the **abundant structural information in legal cases**.
- Transform a legal case into a Text-Attributed Case Graph (TACG).
- An Edge Graph Attention Layer (EdgeGAT) and a readout function are proposed to obtain a graph level case representation.

TACG

- Extract the entities and the relations using Information Extraction
- Separate legal fact and legal issue
- Create text-attributed case graph, with a virtual node

CaseGNN Framework

[Tang, Qiu et al. ECIR 2024] 33

Overall Performance

Methods	COLIEE2022						COLIEE2023							
	P@5	R@5	Mi-F1	Ma-F1	MRR@5	6 MAP	NDCG@5	P@5	R@5	Mi-F1	Ma-F1	MRR@5	MAP	NDCG@5
One-stage														
BM25	17.9	$\underline{21.2}$	19.4	$\underline{21.4}$	23.6	25.4	33.6	16.5	30.6	$\underline{21.4}$	$\underline{22.2}$	23.1	20.4	23.7
LEGAL-BERT	4.47	5.30	4.85	5.38	7.42	7.47	10.9	4.64	8.61	6.03	6.03	11.4	11.3	13.6
MonoT5	0.71	0.65	0.60	0.79	1.39	1.41	1.73	0.38	0.70	0.49	0.47	1.17	1.33	0.61
SAILER	16.6	15.2	14.0	16.8	17.2	18.5	25.1	12.8	23.7	16.6	17.0	25.9	25.3	29.3
PromptCase	17.1	20.3	18.5	20.5	35.1	33.9	38.7	16.0	29.7	20.8	21.5	32.7	32.0	<u>36.2</u>
CaseGNN (Ours)	35.5 ±0.2	42.1 ±0.2	2 38.4 ±0.3	42.4 ±0.1	66.8 ±0.8	8 64.4 ±0.9	69.3 ±0.8	17.7 ±0.	7 32.8 ±0.7	23.0 ±0.5	5 23.6 ±0.5	38.9 ±1.1	37.7 ±0.8	42.8 ±0.7
Two-stage														
SAILER	<u>23.8</u>	25.7	$\underline{24.7}$	25.2	$\underline{43.9}$	$\underline{42.7}$	$\underline{48.4}$	19.6	32.6	24.5	23.5	37.3	36.1	40.8
PromptCase	23.5	25.3	24.4	<u>30.3</u>	41.2	39.6	45.1	$\underline{21.8}$	<u>36.3</u>	$\underline{27.2}$	26.5	39.9	$\underline{38.7}$	$\underline{44.0}$
CaseGNN (Ours)	$22.9{\pm}0.1$	27.2 ±0.1	l 24.9 ±0.1	$27.0 {\pm} 0.1$	54.9 ±0.4	4 54.0 ±0.5	57.3 ±0.6	20.2 ± 0.2	2 37.6 ±0.5	26.3 ± 0.3	27.3 ±0.2	45.8 ±0.9	44.4 ±0.8	$\textbf{49.6}{\pm}0.8$

• CaseGNN is better in most situations.

CaseGNN Case Study

• Successful retrieval by CaseGNN but not by PromptCase.

- Original text: entities and relationships are far from each other.
 Language models are not good at long dependency.
- TACG: brings multiple entities together.

Takeaway and Conclusions

Takeaway and Conclusions

- There are **abundant structural information** in different IR scenarios
- The graph construction determines how good a graph-based method can be
- The graph learning module is effective. But a **dedicated design** can further improve performance.

Thank You!

Ruihong Qiu r.qiu@uq.edu.au