

Graph Condensation for Continual Graph Learning

Ruihong Qiu

The University of Queensland

r.qiu@uq.edu.au

Contents

- Continual Graph Learning
- Related Work
- CaT
- PUMA

Contents

- Continual Graph Learning
- Related Work
- CaT
- PUMA

Continual Graph Learning (CGL)

- Traditional Graph Neural Networks (GNNs) are not good at **streaming** inputs.
- New nodes can appear dynamically

Class/Task Incremental Learning (IL)

• Class-IL is much harder than Task-IL

Catastrophic Forgetting (CF)

- CF is a general challenge in CGL
- Old knowledge covered by new ones.

Contents

- Continual Graph Learning
- Related Work
- CaT
- PUMA

Related Work

• Regularisation-based: TWP

• Architecture-based: HPNs

Related Work

• Replay-based

Related Work

- Replay-based: ER-GNN
 - Mean feature
 - Coverage Maximization
 - Influence Maximization

• SSM

Contents

- Continual Graph Learning
- Related Work
- CaT
- PUMA

CaT **Solution**: Balanced Continual Graph Learning with Graph Condensation

Yilun Liu, Ruihong Qiu, Zi Huang

The University of Queensland

yilun.liu@uq.edu.au

https://github.com/superallen13/CaT-CGL

Batch Training in Replay-based CGL

• Sample and combine

Challenges in Replay

• Large storage requirement

• Imbalanced training graph size

Condense and Train (CaT) Framework

Graph Condensation

- Smaller yet effective
- Model performance trained on condensed graph matches on original graph
- Bi-level optimisation problem

$$\min_{\tilde{G}} \mathcal{L}(G; \tilde{\theta}), s. t. \tilde{\theta} = \underset{\theta}{\operatorname{argmin}} \mathcal{L}(\tilde{G}; \theta)$$

Condensed Graph Memory (CGM)

- Distribution matching method.
- Random GNN encoder to obtain latent features.
- Minimise **MMD** losses

$$\ell_{\text{MMD}} = \sum_{c \in \mathcal{C}_k} r_c \cdot ||\text{Mean}(\boldsymbol{E}_{k,c}) - \text{Mean}(\tilde{\boldsymbol{E}}_{k,c})||^2$$

Train in Memory (TiM)

- Condense incoming graph
- Balanced replayed graphs.

Algorithm 2: Overall procedure of CaTInput: A streaming of tasks $\{\mathcal{T}_1, \mathcal{T}_2, ..., \mathcal{T}_K\}$ Output: GNN_K1 Initialise a CGL model GNN₀;2 Initialise an empty memory bank \mathcal{M}_0 ;3 for $k \leftarrow 1$ to K do4Extract incoming graph \mathcal{G}_k from \mathcal{T}_k ;5Obtain $\tilde{\mathcal{G}}_k$ by CGM;6 $\mathcal{M}_k = \mathcal{M}_{k-1} \cup \tilde{\mathcal{G}}_k$;7Update GNN_{k-1} to GNN_k;8 end

Implementation

- Baselines
 - Joint: full-size.
 - ER-GNN: informative nodes.
 - SSM: subgraphs.
- Metrics
 - Average performance (AP): $\frac{1}{k}\sum_{i=1}^{k} m_{k,i}$
 - Backward transfer (BWT): $\frac{1}{k-1}\sum_{i=1}^{k-1} m_{k,i} - m_{i,i}$

- Experiment settings
 - Dataset splitting [CGLB, NeurIPS 2022]
 - Each task contains two classes.
 - Task incremental learning (task-IL)
 - Classification heads are growing.

Dataset	Nodes	Edges	Features	Classes	Tasks
CoraFull	19,793	130,622	8,710	70	35
Arxiv	169,343	1,166,243	128	40	20
Reddit	227,853	114,615,892	602	40	20
Products	2,449,028	61,859,036	100	46	23

Overall Results

Category	Methods	CoraFull		Arxiv		Reddit		Products	
		AP (%) ↑	BWT (%) \uparrow	AP (%) ↑	BWT (%) ↑	AP (%) ↑	BWT (%) \uparrow	AP (%) ↑	BWT (%) ↑
Lower bound	Finetuning	2.2±0.0	-96.6±0.1	5.0±0.0	-96.7±0.1	5.0±0.0	-99.6±0.0	4.3±0.0	-97.2±0.1
Regularisation	EWC	2.9±0.2	-96.1±0.3	5.0±0.0	-96.8±0.1	5.3±0.6	-99.2±0.7	7.6±1.1	-91.7±1.4
	MAS	2.2±0.0	-94.1±0.6	4.9±0.0	-95.0±0.7	10.7±1.4	-92.7±1.5	10.1±0.6	-89.0±0.5
	GEM	2.5±0.1	-96.6±0.1	5.0 ± 0.0	-96.8±0.1	5.3±0.5	-99.3±0.5	4.3±0.1	-96.8±0.1
	TWP	<u>21.2±3.2</u>	<u>-67.4±1.6</u>	4.3±1.1	-93.0±8.3	9.5±2.0	-35.5±5.5	6.8±3.5	-64.3±12.8
Distillation	LWF	2.2±0.0	-96.6±0.1	5.0±0.0	-96.8±0.1	5.0±0.0	-99.5±0.0	4.3±0.0	-96.8±0.2
Replay	ER-GNN	4.0±0.7	-94.3±0.9	30.8±0.6	-68.3±0.7	31.8±4.0	-71.2±4.2	39.5±1.3	-48.2±1.4
	SSM	16.2±2.8	-82.1±2.9	<u>35.1±1.8</u>	<u>-63.7±1.9</u>	<u>51.6±6.4</u>	<u>-50.3±6.7</u>	<u>62.7±0.5</u>	<u>-22.1±0.5</u>
Full dataset	Joint	85.3±0.1	-2.7±0.0	63.5±0.3	-15.7±0.4	98.2±0.0	-0.5±0.0	72.2±0.4	-5.3±0.5
Ours	СаТ	64.5±1.4	-3.3±2.6	66.0±1.1	-13.1±1.0	97.6±0.1	-0.2±0.2	71.0±0.2	-4.8±0.4

- Replayed-based methods are overall better.
- CaT is the best, sometimes can match the ideal Joint scenario.

Effectiveness of CGM

- Use TiM for ER-GNN and SSM
- CGM is more effective than other memory banks

Visualisation of CGM

(c) Random Choice

(d) CGM

Good coverage of the original distribution

TiM for Catastrophic Forgetting

• TiM has a **balanced** learning to **solve CF**.

Conclusion

- 1. CGM: Graph condensation gives a small yet effective memory bank
- 2. TiM: A training scheme for balanced continual learning

https://github.com/superallen13/CaT-CGL

Contents

- Continual Graph Learning
- Related Work
- CaT
- PUMA

PUMA MR: Efficient Continual Graph Learning via Retraining with Pseudo-label Guided Graph Condensation

Yilun Liu, Ruihong Qiu, Yanran Tang, Zi Huang

The University of Queensland

yilun.liu@uq.edu.au

https://github.com/super allen13/PUMA

Problems of CaT

- 1. Unlabelled nodes in streaming graph data
- 2. Still imbalance historical knowledge

Problems of CaT

3. Slow condensation and training

PUMA Framework

Pseudo Labelling-Guided CGM

- An extra classifier for pseudo labels
- Select unlabelled nodes with a high confidence score
- Condense both labelled and confidently pseudo labelled nodes

Train from Scratch

- No more continual training, but retraining from scratch
- **Balanced** historical knowledge and incoming knowledge.

Fast Condensation and Training

- One-time propagation
- Wide graph encoders
- They are fast in calculation and not sacrificing performance. Details in paper

Overall Performance

Category	Methods	CoraFull		Arxiv		Reddit		Products	
		AP (%) ↑	BWT (%) ↑	AP (%) ↑	BWT (%) ↑	AP (%) ↑	BWT (%) ↑	AP (%) ↑	BWT (%) ↑
Lower bound	Finetuning	2.2±0.0	-96.6±0.1	5.0±0.0	-96.7±0.1	5.0±0.0	-99.6±0.0	4.3±0.0	-97.2±0.1
Regularisation	EWC	2.9±0.2	-96.1±0.3	5.0±0.0	-96.8±0.1	5.3±0.6	-99.2±0.7	7.6±1.1	-91.7±1.4
	MAS	2.2±0.0	-94.1±0.6	4.9±0.0	-95.0±0.7	10.7±1.4	-92.7±1.5	10.1±0.6	-89.0±0.5
	GEM	2.5±0.1	-96.6±0.1	5.0±0.0	-96.8±0.1	5.3±0.5	-99.3±0.5	4.3±0.1	-96.8±0.1
	TWP	21.2±3.2	-67.4±1.6	4.3±1.1	-93.0±8.3	9.5±2.0	-35.5±5.5	6.8±3.5	-64.3±12.8
Distillation	LWF	2.2±0.0	-96.6±0.1	5.0±0.0	-96.8±0.1	5.0±0.0	-99.5±0.0	4.3±0.0	-96.8±0.2
Replay	ER-GNN	3.1±0.2	-94.6±0.2	23.2±0.5	-77.1±0.5	20.0±3.0	-83.7±3.1	34.0±1.0	-55.7±0.8
	SSM	3.5±0.5	-94.7±0.5	26.4±0.8	-73.7±0.9	41.8±3.2	-60.8±3.4	58.1±0.4	-29.3±0.5
Full dataset	Joint	85.3±0.1	-2.7±0.0	63.5±0.3	-15.7±0.4	98.2±0.0	-0.5±0.0	72.2±0.4	-5.3±0.5
Condensation	CaT (ours) PUMA (ours)	<u>68.5±0.9</u> 77.9±0.2	<u>-5.7±1.3</u> - 4.2±0.9	<u>64.9±0.3</u> 67.0±0.1	<u>-12.5±0.8</u> - 12.2±0.3	<u>97.7±0.1</u> 98.0±0.1	<u>-0.4±0.1</u> -0.3±0.1	<u>71.1±0.3</u> 74.2±0.4	<u>-5.4±0.3</u> -4.1±0.5

Effectiveness of Retraining

Converge higher

Time Efficiency

• PUMA is fast and performs well

Conclusion

- 1. Unlabelled nodes help with condensation
- 2. Retraining improve the performance
- 3. Careful designs to accelerate

Q&A

Ruihong Qiu

The University of Queensland r.qiu@uq.edu.au

CRICOS 00025B • TEQSA PRV12080