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CGLB: Benchmark Tasks for Continual Graph Learning, NeurIPS 2022 4

• Traditional Graph Neural Networks (GNNs) 

are not good at streaming inputs.

• New nodes can appear dynamically

Continual Graph Learning (CGL)



CGLB: Benchmark Tasks for Continual Graph Learning, NeurIPS 2022 5

• Class-IL is much harder than Task-IL

Class/Task Incremental Learning (IL)
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• CF is a general challenge in CGL

• Old knowledge covered by new ones.

Catastrophic Forgetting (CF)
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Overcoming Catastrophic Forgetting in Graph Neural Networks, AAAI 2021

Hierarchical Prototype Networks for Continual Graph Representation Learning, TPAMI 2022
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• Regularisation-based: TWP

Related Work

• Architecture-based: HPNs
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• Replay-based

Related Work
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Overcoming Catastrophic Forgetting in Graph Neural Networks with Experience Replay, AAAI 2021

Hierarchical Prototype Networks for Continual Graph Representation Learning, TPAMI 2022
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• Replay-based: ER-GNN

– Mean feature

– Coverage Maximization

– Influence Maximization

Related Work

• SSM
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CaT : Balanced Continual Graph 
Learning with Graph Condensation

Yilun Liu, Ruihong Qiu, Zi Huang

The University of Queensland

yilun.liu@uq.edu.au

https://github.com/superallen13/CaT-CGL

https://github.com/superallen13/CaT-CGL
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• Sample and combine

Batch Training in Replay-based CGL
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• Large storage requirement

Challenges in Replay
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Condense and Train (CaT) Framework
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Graph Condensation

Graph Condensation for Graph Neural Networks, ICLR 2022 16

• Smaller yet effective

• Model performance trained on condensed graph matches on original graph

• Bi-level optimisation problem

 min
෨𝐺
ℒ 𝐺; ෨θ , 𝑠. 𝑡. ෨θ = argmin

𝜃
ℒ ෨𝐺; 𝜃  
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Condensed Graph Memory (CGM)

• Distribution matching method.

• Random GNN encoder to obtain latent features.

• Minimise MMD losses
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Train in Memory (TiM)

• Condense incoming graph

• Balanced replayed graphs.
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• Baselines

• Joint: full-size.

• ER-GNN: informative nodes.

• SSM: subgraphs.

• Metrics

• Average performance (AP): 
1

𝑘
σ𝑖=1
𝑘 𝑚𝑘,𝑖 

• Backward transfer (BWT): 
1

𝑘−1
σ𝑖=1
𝑘−1𝑚𝑘,𝑖 −𝑚𝑖,𝑖 

Implementation

• Experiment settings

• Dataset splitting [CGLB, NeurIPS 2022]

– Each task contains two classes.

• Task incremental learning (task-IL)

– Classification heads are growing.



Overall Results
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• Replayed-based methods are overall better.

• CaT is the best, sometimes can match the ideal Joint scenario.
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Effectiveness of CGM

• Use TiM for ER-GNN and SSM

• CGM is more effective than other 

memory banks
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Visualisation of CGM

• Good coverage of the original 

distribution
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TiM for Catastrophic Forgetting

• TiM has a balanced learning to solve CF.



1. CGM: Graph condensation gives a small yet effective memory bank

2. TiM: A training scheme for balanced continual learning

Conclusion
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https://github.com/superallen13/CaT-CGL

https://github.com/superallen13/CaT-CGL
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PUMA : Efficient Continual Graph 
Learning via Retraining
with Pseudo-label Guided Graph 
Condensation
Yilun Liu, Ruihong Qiu, Yanran Tang, Zi Huang

The University of Queensland

yilun.liu@uq.edu.au
https://github.com/super

allen13/PUMA

https://github.com/superallen13/PUMA
https://github.com/superallen13/PUMA


1. Unlabelled nodes in streaming graph data

2. Still imbalance historical knowledge

Problems of CaT
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3. Slow condensation and training

Problems of CaT

28
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PUMA Framework
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Pseudo Labelling-Guided CGM

• An extra classifier for pseudo labels

• Select unlabelled nodes with a high confidence score

• Condense both labelled and confidently pseudo labelled nodes
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Train from Scratch

• No more continual training, but retraining from scratch

• Balanced historical knowledge and incoming knowledge.
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Fast Condensation and Training

• One-time propagation

• Wide graph encoders

• They are fast in calculation and not sacrificing performance. Details in paper
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Overall Performance
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Effectiveness of Retraining

• Converge higher
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Time Efficiency

• PUMA is fast and performs well



1. Unlabelled nodes help with condensation

2. Retraining improve the performance

3. Careful designs to accelerate

Conclusion
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